

רדיאיקס

IN ACCORDANCE WITH ISO 14025:2006 and EN 15804:2012+A2:2019 for

INTERIOR MORTAR

by Readymix Industries (Israel) Ltd.

Programme: The International EPD[®] System www.environdec.com

> Programme Operator: EPD International AB

> > **S-P Code:** S-P-06623

Publication Date: 2022-12-26 Validity Date: 2027-12-25 Geographical Scope: Israel

An EPD should provide current information and may be updated if conditions change. The stated validity is therefore subject to the continued registration and publication at www environdec.com.

ISO standard ISO 21930 and CEN standard EN 15804 serves as the core Product Category Rules (PCR)

Product Category Rules (PCR):

PCR 2019:14 Construction Products, version 1.2.2, with UN CPC 3733, Construction EN 15804:2012 + A2:2019 Sustainability of Construction Works

PCR review was conducted by: The Technical Committee of the International EPD® System.

Review Chair: Claudia A. Peña, University of Concepción, Chile

EPDs within the same product category but registered in different EPD programmes, or not compliant with EN 15804, may not be comparable. For two EPDs to be comparable, they must be based on the same PCR (including the same version number) or be based on fully-aligned PCRs or versions of PCRs; cover products with identical functions, technical performances and use (e.g. identical declared/functional units); have equivalent system boundaries and descriptions of data; apply equivalent data quality requirements, methods of data collection, and allocation methods; apply identical cut-off rules and impact assessment methods (including the same version of characterisation factors); have equivalent content declarations; and be valid at the time of comparison. For further information about comparability, see EN 15804 and ISO 14025.

The International EPD[•] System

FPD

EPD International AB Box 210 60 SE-100 31 Stockholm, Sweden

www.environdec.com info@environdec.com

Life Cycle Assessment (LCA)

LCA accountability: Yıldıray Yılmaz, Metsims Sustainability Consulting

Third-party Verification

Independent third-party verification of the declaration and data, according to ISO 14025:2006, via:

EPD verification by individual 3rd party verifier

Third party verifier: Prof. Ing. Vladimír Kočí, Ph.D., MBA, LCA Studio Šárecká 5,16000 Prague 6- Czech Republic

Approved by: The International EPD[®] System

Procedure for follow-up of data during EPD validity involves third party verifier:

Yes No

Readymix Industries (Israel) Ltd. has the sole ownership, liability, and responsibility for this EPD.

HOW TO READ THIS EPD?

An Environmental Product Declaration (EPD) is an ISO Type III Environmental Declaration based on ISO 14025 standard. An EPD transparently reports the environmental performance of products or services from a lifecycle perspective. The preparation of an EPD includes different stages, from acquiring raw materials to the end of life of the final product/service. EPDs are based on international standards and consider the entire value chain. Additionally, EPD is a third-party verified document. This EPD includes several sections described below.

1. General and Program Information

The first part of an EPD has information about the name of the manufacturer and product/service and other general information such as the validity and expiration dates of the document, the name of the program operator, geographical scope, etc. The second page states the standards followed and gives information about the program operator, third-party verifier, etc. The followed Product Category Rule (PCR) is indicated on the second page.

2. Company and Product/Service Information

Information about the company and the investigated product is given in this section. It summarizes the characteristics of the product provided by the manufacturer. It also includes information about the product such as product composition and packaging.

3. LCA Information

LCA information is one of the most important parts of the EPD as it describes the functional/declared unit, time representativeness of the study, database(s) and LCA software, along with system boundaries. The table presented in this part has columns for each stage in the life cycle. The considered stages are marked 'X' whereas the ones that are not considered are labeled as 'ND' (Not Relevant). Not all EPDs consider the full life cycle assessment for a product's entire life stages. The 'System Boundary' page is also the place where one can find detailed information about the stages and the assumptions made.

4. LCA Results

The results of the Life Cycle Assessment analysis are presented in table format. The first column in each table indicates the name of the impact category and their measurement units are presented in the second column. These tables show an amount at each life cycle stage to see the impact of different indicators on different stages. Each impact can be understood as what is released through the production of the declared unit of the material—in this case, 1 m³ of interior mortar. The benefits of reuse/recycling of the declared product is reflected in this section.

The first impact in the table is global warming potential (GWP), which shows how much CO_2 is released at each stage. Other impacts include eutrophication potential, acidification potential, ozone layer depletion, land use related impacts, etc. The second table provides results for resource use and the third table is about the waste produced during the production. The fourth and final table shows the results for the GWP-GHG indicator, which is almost equivalent to the GWP-Total indicator mentioned previously. The only difference is that this indicator excludes the biogenic carbon content by following a certain methodology.

ABOUT THE COMPANY

The Readymix Group is Israel's leading producer and supplier of raw materials for the Construction Industry. Over the decades, the Group has built its reputation on providing building solutions based on products and services representing consistent high quality, excellence, and reliability. Readymix Industries (Israel) is a story of development, success, and contribution to the country's industry. In the early '60s, the British company RMC began to expand worldwide and established Readymix Industries (Israel) Ltd. in 1962. The hands that had cast the first concrete cube in the company's plant in December 1962, are the same hands that have brought the company this far. In 2005, RMC was acquired by Cemex.

Cemex is a leading vertically integrated heavy building materials company focused on four core businesses— Cement, Ready-Mix Concrete, Aggregates, and Urbanization Solutions. The Group is active in several fields and specializes in ready-mixed concrete, aggregates, infrastructure products, landscape products, chemical admixtures for concrete and white cement.

The Readymix Group's Concrete Division is the leading producer of ready-mixed concrete and mortar in Israel. With a national network of plants from Kiryat Shmona in the north to Eilat in the south, the Group can ensure transfer and efficient supply to its customers. Readymix has supplied concrete for many of Israel's most prominent construction projects, including power stations, bridges, airports and many other important projects, such as Ben Gurion 2000 Airport, the Ayalon Highway, the Ashkelon and Herzliya marinas, the CrossIsrael Highway, the Haifa national soccer stadium and a desalination plant.

ABOUT THE PRODUCT

Interior mortar is Readymix's innovative and advanced ready mortar, which has improved strength and adhesion features, and has strong durability over time.

	INTERIOR MORTAR
Product Benefits	 Can be applied within 48 hours from arriving to the site Easy to use, has low depreciation, and high breathability
Uses	 Suitable for residential, industrial and office buildings Suitable on concrete, ytong block, pumice block Suitable for pumping to high floors
Features and Technical Data	 Consist of cement, aggregates, water, various additives Contains polymer fibers to reduce fracture Bending resistance, after 35 days- 1.2 MPa Pressure resistance, after 35 days- 4 MPa Adhesiveness, after 35 days- 0.15 MPa Free drying shrinkage- 0.5 mm/m Controlled drying shrinkage- no ring cracks

The product mainly consists of two materials: cement and aggregates. Minor additives such as fibers are used with small quantities along with water. The percentage breakdown for the wet weight composition is shown below. The product weights 1446 kg for 1 m³ for wet and 1656 kg for 1 m³ for dry weight.

Product Composition (% for wet weight)								
Fine aggregates	77%							
Water	13%							
Cement (mainly CEM II) + CEM I	10%							
Fibers and Additives	<0.1%							

Since the product is freshly transported, there is no packaging use.

LCA INFORMATION

Functional Unit / Declared Unit	1 m ³ of Interior Mortar
Time Representativeness	2021
Database(s) and LCA Software Used	Ecoinvent 3.8 and SimaPro 9.3
System Boundaries	Cradle to gate with options, modules C1–C4, module D and with optional modules (A1–A3 + C + D and A4 module)

	Product Stage		Constru Proc Sta	Use Stage					End of Life Stage			Benefits and Loads					
	Raw Material Supply	Transport	Manufacturing	Transport	Construction Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational Energy Use	Operational Water Use	Deconstruction / Demolition	Transport	Waste Processing	Disposal	Future reuse, recycling or energy recovery potentials
Module	A1	A2	A3	A4	A5	B1	B2	В3	B4	В5	B6	В7	C1	C2	C3	C4	D
Modules Declared	х	х	х	х	ND	ND	ND	ND	ND	ND	ND	ND	x	x	х	x	х
Geography	IL	IL	IL	IL	-	-	-	-	-	-	-	-	IL	IL	IL	IL	IL
Specific Data Used	>90%	>90%	>90%	>90%	-	-	-	-	-	-	-	-	-	-	-	-	-
Variation - Products	NR					-	-	-	-	-	-	-	-	-	-	-	-
Variation - Sites			<10%			-	-	-	-	-	-	-	-	-	-	-	-

(X = Included in LCA, ND= Not declared, NR= Not relevant)

LCA INFORMATION

The inventory for the LCA study is based on the 2021 production figures of Readymix Industries (Israel) Ltd. considering the company's production plants throughout Israel. This EPD investigates the environmental performance of interior mortar product of the company based on 1 m³ declared unit. This EPD's system boundary is cradle to gate with options, modules C1–C4, module D and with optional modules (A1–A3 + C + D and A4 module).

EPD

Allocations

Water consumption, energy consumption, and raw material transportation were weighted according to 2021 production figures. In addition, hazardous and non-hazardous waste amounts were also allocated from the 2021 total waste generation.

Cut-off Criteria

1% cut-off applied. Data for elementary flows to and from the product system contributing to a minimum of 99% of the declared environmental impacts have been included.

REACH Regulation

No substances included in the Candidate List of Substances of Very High Concern for authorization under the REACH regulations are present in this product either above the threshold for registration with the European Chemicals Agency or above 0.1% (wt/wt).

Geographical Scope

The geographical scope of this EPD is Israel.

Data Quality and Modelling

The results of the LCA with the indicators as per EPD requirement are given in the LCA result tables. All energy calculations were obtained using the Cumulative Energy Demand (LHV) methodology, while freshwater use is calculated with selected inventory flows in SimaPro according to the PCR. There are no co-product allocations within the LCA study underlying this EPD. The SimaPro 9.3 LCA software and the Ecoinvent 3.8 LCA database were used to calculate the environmental impacts. The regional energy dataset is used for all energy calculations.

Variation - Sites

The percentage of raw meterials used in the product and the energy requirements do not change from one plant to another. Thus, the variation of sites in terms of GWP-GHG is less than 10 %.

INTERIOR MORTAR

Raw Material Supply

Production starts with acquiring the raw materials. Raw material supply stage includes raw material extraction and/or preparation and pre-treatment processes before production. The main materials used in the mortar are cement, fine aggregates such as sand, and some minor additives.

Manufacturing

Mortar production starts with gathering the raw materials in needed quantities and mixing them according to product formulation. Then the mix is transferred to special silos. Finally, the product is distributed to the customers.

Demolition / Deconstruction

This stage includes the demolition/deconstruction of the mortar. It is assumed 0.01 kWh/kg energy is used.

Waste Processing

It is assumed that no waste processing is needed.

Future Reuse, Recycling or Energy Recovery Potential

This stage aims to analyze the benefits from the reuse, recyling or energy recovery potential of the investigated product. It is assumed that the recycled mortar is used as a substitute for the fine aggregate content during the cement/concrete production. The substitution rate is taken as 1 % of the recycled mortar.

Transport of Raw Materials

Transport is relevant for delivery of raw materials and other materials to the plant, and the transport of materials within the plant. Transport distances of the raw materials to different plant provided by the company for each route.

Transport to Site

Transport routes for the final product to sites are provided by the company. Based on the given information, the product shipment distances of the routes are calculated.

Transport

Α4

A2

A3

A1

This stage is related with the transportation of construction waste to a waste processing area. The transport distance of the waste material is taken as 40 km.

Disposal

This stage considers the impacts of the disposal of the related product. 48% of the product is assumed to be recycled and the rest is landfilled as inert waste.

רדיאיקס

LCA Results for 1 m³ of Interior Mortar

Impact Category	Unit	A1-A3	A4	C1	C2	С3	C4	D
GWP- Fossil	kg CO ₂ eq	165	1.86	10.3	5.43	0	7.30	-0.082
GWP- Biogenic	kg CO ₂ eq	3.14	0.003	-0.029	0.010	0	0.094	-271E-6
GWP- Luluc	kg CO ₂ eq	0.386	0.001	419E-6	0.002	0	0.007	-55.4E-6
GWP- Total	kg CO ₂ eq	168	1.86	10.3	5.44	0	7.40	-0.083
ODP	kg CFC-11 eq	8.10E-6	428E-9	336E-9	1.25E-6	0	2.22E-6	-14.6E-9
AP	mol H+ eq	0.628	0.008	0.056	0.023	0	0.062	-0.001
*EP- Freshwater	kg P eq	0.020	135E-6	0.003	395E-6	0	0.002	-12.3E-6
EP- Marine	kg N eq	0.167	0.002	0.008	0.007	0	0.021	-208E-6
EP- Terrestrial	mol N eq	1.86	0.026	0.087	0.075	0	0.232	-0.002
РОСР	kg NMVOC	0.445	0.006	0.023	0.019	0	0.057	-0.001
ADPE	kg Sb eq	0.001	4.24E-6	13.3E-6	12.4E-6	0	23.9E-6	-499E-9
ADPF	MJ	971	28.4	140	83.0	0	172	-1.14
WDP	m³ depriv.	53.9	0.106	0.618	0.310	0	7.46	-0.317
PM	disease inc.	7.24E-6	165E-9	73.6E-9	482E-9	0	1.21E-6	-9.73E-9
IR	kBq U-235 eq	3.72	0.133	0.024	0.388	0	0.801	-0.006
ETP- FW	CTUe	2303	24.1	65.5	70.3	0	134	-1.18
HTTP- C	CTUh	46.9E-9	621E-12	928E-12	1.81E-9	0	5.36E-9	-61.9E-12
HTTP- NC	CTUh	1.45E-6	24.5E-9	38.3E-9	71.7E-9	0	82.0E-9	-1.18E-9
SQP	Pt	2351	33.3	15.3	97.3	0	425	-6.41
Acronyms	GWP-total: Climate - land use and tran tion freshwater, EP- Abiotic depletion- e matter, IR: lonising health effects, SQP	sformation, OD marine: Eutrop elements, ADPF radiation, ETP-	P: Ozone layer d hication marine, : Abiotic depletic :FW: Ecotoxicity	epletion, AP: Aci EP-terrestrial: E on- fossil resourc freshwater, HTF	idification terrest utrophication ter es, WDP: Water	rial and freshw restrial, POCP: scarcity, PM: Re	ater, EP-freshwa Photochemical c spiratory inorga	ter: Eutrophica oxidation, ADPE nics- particulate
Legend	A1: Raw Material Si / Demolition, C2: Ti			0.			1	
Disclaimer 1	This impact catego cycle. It does not c in underground fac measured by this ir	onsider effects cilities. Potentia	due to possible	nuclear accident	s, occupational	exposure nor du	ue to radioactive	e waste disposa
Disclaimer 2	The results of this e is limited experience			shall be used wit	th care as the un	certainties on t	hese results are	high or as ther

?יאיק0

LCA RESULTS

Resource use												
Impact Category	Unit	A1-A3	A4	C1	C2	С3	C4	D				
PERE	MJ	54.4	0.315	0.630	0.919	0	2.91	-0.033				
PERM	MJ	0	0	0	0	0	0	0				
PERT	MJ	54.4	0.315	0.630	0.919	0	2.91	-0.033				
PENRE	MJ	973	28.4	140	83.0	0	172	-1.14				
PENRM	MJ	0	0	0	0	0	0	0				
PENRT	MJ	973	28.4	140	83.0	0	172	-1.14				
SM	kg	0	0	0	0	0	0	0				
RSF	MJ	0	0	0	0	0	0	0				
NRSF	MJ	0	0	0	0	0	0	0				
FW	m³	6.73	0.006	0.037	0.017	0	0.194	-0.024				
Acronyms			,	luding resources of renewable pri				, ,				

sources used as raw materials, PERT: Total use of renewable primary energy, PENRE: Use of non-renewable primary energy excluding resources used as raw materials, PENRM: Use of non-renewable primary energy resources used as raw materials, PENRM: Total use of non-renewable primary energy, SM: Secondary material, RSF: Renewable secondary fuels, NRSF: Non-renewable secondary fuels, FW: Net use of fresh water.

Waste&Output Flows

wasted output hows												
Impact Category	Unit	A1-A3	Α4	C1	C2	C3	C4	D				
HWD	kg	0	0	0	0	0	0	0				
NHWD	kg	21.7	0	0	0	0	0	0				
RWD	kg	0	0	0	0	0	0	0				
CRU	kg	0	0	0	0	0	0	0				
MFR	kg	0	0	0	0	0	0	0				
MER	kg	0	0	0	0	0	0	0				
EE (Electrical)	MJ	0	0	0	0	0	0	0				
EE (Thermal)	MJ	0	0	0	0	0	0	0				
			1			·						

Acronyms

HWD: Hazardous waste disposed, NHWD: Non-hazardous waste disposed, RWD: Radioactive waste disposed, CRU: Components for reuse, MFR: Material for recycling, MER: Materials for energy recovery, EE (Electrical): Exported energy electrical, EE (Thermal): Exported energy, Thermal.

Climate Impact According to PCR 2019:14											
Indicator	Unit	A1-A3	A4	C1	C2	C3	C4	D			
*GHG-GWP	kg CO ₂ eq	164	1.84	10.2	5.38	0	7.23	-0.081			

GWP-GHG = Global Warming Potential total excl. biogenic carbon following IPCC AR5 methodology

* The indicator includes all greenhouse gases included in GWP-total but excludes biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. This indicator is thus equal to the GWP indicator originally defined in EN 15804:2012+A1:2013

REFERENCES

GPI/ General Programme Instructions of the International EPD® System. Version 4.0.

EN ISO 9001/ Quality Management Systems- Requirements

EN ISO 14001/ Environmental Management Systems- Requirements

EN ISO 50001/ Energy Management Systems- Requirements

ISO 14020:2000/ Environmental Labels and Declarations — General principles

EN 15804:2012+A2:2019/ Sustainability of construction works- Environmental Product Declarations — Core rules for the product category of construction products

ISO 14025/ DIN EN ISO 14025:2009-11: Environmental labels and declarations - Type III environmental declarations — Principles and procedures

ISO 14040/44/ DIN EN ISO 14040:2006-10, Environmental management- Life cycle assessment- Principles and framework (ISO14040:2006) and Requirements and guidelines (ISO 14044:2006)

PCR for Construction Products and CPC 54 Construction Services/ Prepared by IVL Swedish Environmental Research Institute, Swedish Environmental Protection Agency, SP Trä, Swedish Wood Preservation Institute, Swedisol, SCDA, Svenskt Limträ AB, SSAB, The International EPD System, 2019:14 Version 1.11 DATE 2019-12-20

The International EPD[®] System/ The International EPD[®] System is a programme for type III environmental declarations, maintaining a system to verify and register EPD[®]s as well as keeping a library of EPD[®]s and PCRs in accordance with ISO 14025. www.environdec.com

Ecoinvent / Ecoinvent Centre, www.ecoinvent.org

SimaPro/SimaPro LCA Software, Pré Consultants, the Netherlands, www.pre-sustainability.com

www.readymix.co.il/en/

Contact Information

The International EPD[®] System www.environdec.com

EPD International AB Box 210 60 SE-100 31 Stockholm, Sweden

www.environdec.com info@environdec.com

Phone: (+972) 37519464 Fax: (+972) 37510201

www.readymix.co.il infocenter_israel@cemex.com

155, Bialik Street, Ramat-Gan 5252346, Israel

Owner of the declaration

Readymix Industries (Israel) Ltd.

LCA practitioner & EPD Designer

The United Kingdom: 4 Clear Water Place Oxford OX2 7NL, UK 0 800 722 0185

www.metsims.com info@metims.com

Creative Environm

Alony Consultants 12 Hakalaniot St. Yokneam Illit, Israel

> www.alony.co sagi@alony.co

THE INTERNATIONAL EPD® SYSTEM

Programme and Programme operator

